leftimage for poohprod.ru

Numerical Derivative

We are going to develop a Matlab function to calculate the numerical derivative of any unidimensional scalar function fun(x) at a point x0. The function is going to have the following functionality:

Usage: D = Deriv(fun, x0)
fun: name of the unidimensional scalar function

x0: point of interest (scalar)
D: derivative of fun at x0 (scalar)

As you may remember, the very well known way to analytically derivate any function is calculating:

formula for derivatives

This roughly means that we have to find the value of the function in two very close values (one of them is the point of interest), get the difference of those values and divide it by the displacement of the independent variable. In other words,

First step:
Find functions for derivatives, where delta x is a very small value compared to x.

Second step:
Obtain the difference function difference for derivatives.

Third step:

Divide the result above by the small value delta x.

The result is the numerical derivative of your function.

We can implement this algorithm very easily in Matlab, in this way:

function D = Deriv(fun, x0)
% |delta| is relative to |x0|
delta = x0 / 1000;
if x0 == 0
% avoids delta = 0 (**arbitrary value**)
delta = 1e-12;
f1 = feval ( fun, x0 + delta );
f2 = feval ( fun, x0 - delta );
D = (f1 - f2) / (2 * delta);

Note, that we are really evaluating

algorithm for derivative

which should be the same as explained above, since the displacement is almost zero. You can try both options.

Function 'feval' evaluates a given function (the string in the parameter fun) in a specific value (number in second parameter of 'feval').

Now, let's try our derivative function. We create a function in a separate m-file:

function y = inverse(x)
y = 1/x;

And we can call it like this:

Deriv('inverse', 1)

The result is:
Expected: -1 Obtained: -1.0000

Deriv('inverse', 5)

The result is:
Expected: -0.04 Obtained: -0.0400

We can save another totally arbitrary (unidimensional scalar) function in a different m-file:

function y = myfun(x)
y = 3*x^2 + 2*x;

And we can perform the derivative in several ways...

f = 'myfun'
x = 0
Deriv(f, x)

The result is:
Expected: 2 Obtained: 2

x = 5
Deriv(f, x)

The result is:
Expected: 32 Obtained: 32.0000

Deriv(f, -3)

The result is:
Expected: -16 Obtained: -16.0000

From 'Derivative' to home

From 'Derivative' to 'Matlab Cookbook'




footer for derivative page

Related pages

binomial calcequation of a straight line solverloops in matlabnormal standard distribution calculatorrgb color matlabseries of trigonometric functionspiecewise defined function exampleformula to compute compound interestinfinite geometric series sum formulapolynomial fit matlabhow to construct pascal triangleplot sphere in matlabwhile loop in matlab examplessimpson's rule exampledraw bell curve onlineconvert decimal to binary examplejordan matricesvector multiplication matlabbinary numbers to hexadecimalsimpson method matlab codelaptop depreciationeuclidean algorithm for gcfhow to convert binary numbers to octalintegral with limits calculatorsketch piecewise functionhow to label axes in matlabscilab tutorialsbisection matlab codematlab trapzbmi calculatingstraight line equation calculatormatlab plot for loopfzero matlab examplepeak fitting matlabrate of depreciation calculatorresistor capacitor networkconverting binary to hexadecimalscilab programswhile loops matlabf table degrees of freedomsolids of revolutionmatlab function solverpf correction capacitor calculationfind integral calculatorexample of polynomial divisionsurf matlabsyntax of for loop in matlabcholesky decomposition matlabconvertir de decimal a octalgraphics matlabdecimal to binary methodsigned binary to decimal convertersalvage value and scrap valuebinary to hexa conversionexponential decay formula half lifematrices multiplication examplesmatlab upper triangular matrixmatlab gui plotpiecewise function grapher onlinesolving fibonacci sequencezy smith chart color pdfmatlab rect functionmatlab rgbletters in asciioctal to decimal conversion examplesoctal to binary examplessawtooth wavesvoltage across capacitor in rc circuitgaussian area under curveamoritzation tablesolving systems of equations matlabgraphing compound interestharmonic series equationhow do you calculate salvage valuecharging and discharging a capacitor in an r-c circuit11011 binaryhow to calculate the salvage valuelaptop depreciation calculator